National Journal on Advances in Computing & Management, Vol. 3 No. 2 October 2012 16

DETECTING SOFTWARE BUGS IN SOURCE CODE USING DATA MINING
APPROACH

Pravin A.1, Srinivasan S.

"Research Scholar, Sathyabama University, Chennai, India
“Director Affiliation, Anna University of Technology, Madurai, India
Email: 1pravin_ane@rediffmail.com

Abstract

In a large software system knowing which files are most likely to be fault-prone is valuable information for project
managers. They can use such information in prioritizing software testing and allocating resources accordingly. However,
our experience shows that it is difficult to collect and analyze fine grained test defects in a large and complex software
system. On the other hand, previous research has shown that companies can safely use cross-company data with nearest
neighbor sampling to predict their defects in case they are unable to collect local data. In this paper the discussion is
done to predict software bugs in the source code by using data mining approach by training the models that are perfect
and that are defect. In our experiments we used ranking method (RM) as well as nearest neighbor sampling for
constructing method level defect predictors. Our results suggest that, for the analyzed projects, at least 70% of the
defects can be detected by inspecting only (i) 4% of the code using a Naive model, (i) 6% of the code using RM

framework.

Key words: Testing, Defect predictors, Software bugs, Training, Ranking method

I. INTRODUCTION

User configurable software — software that can
be customized through a set of options by the user —
is becoming increasingly prevalent. Often these options
are read at program start-up or can be changed at
run-time, meaning that configurations can be modified
by users’ on-the-fly. A single user configurable software
application can often be instantiated in an enormous
number of ways. From a testing perspective, each
configuration may appear largely similar, but the
underlying execution of code for the same set of test
cases may differ widely across configurations [10]. This
increases the burden on software engineers, who must
consider not just which inputs to utilize in testing, but
also which configurations.

Software testing is one of the most critical and
costly phases in software development. Project
managers need to know “when to stop testing?” and
“which parts of the code to test?”. The answers to
these questions would directly affect defect rates and
product quality as well as resource allocation (i.e.
experience of test staff, how many people to allocate
for testing) and the cost. As the size and complexity
of software increases, manual inspection of software
becomes a harder task. In this context, defect
predictors have been effective secondary tools to help
test teams locate potential defects accurately [7]. These

tools are built using historical defect databases and are
expected to generalize the statistical patterns for
unseen projects. Thus, collecting defect data from past
projects is the key challenge for constructing such
predictors.

In this paper, we share our experience for
building defect predictors in a large system. In order
to improve the code quality, a prediction engine will be
used to predict the code defects before it enters into
a testing phase. The underlying system is standard
3-tier architecture, which has a presentation, application
and data layers. Our analysis focuses on the
presentation and application layers. However, the
content in these layers cannot be separated as a
distinct project. Also a defect prediction model which is
used on a static code attributes like lines of code efc.

Some researchers have argued against the use
of static code attributes claiming that their information
content is very limited [1]. However, static code
attributes are easy to collect, interpret and many recent
research have successfully used them to build defect
predictors [2]. Therefore, we decided to use module
level cross-company data to predict defects in software
projects. Specifically, we have used module level defect
information from projects to train defect predictors and
then to obtain predictions for projects. Previous
researches have shown that cross-company data gives

Pravin etal. : Detecting Software Bugs in Source Code ...

stable results using nearest neighbor sampling
techniques further improves the prediction performance
when used [10].

Our experiment results with data on projects,
estimate that we can detect 70% of the defects with
an investigation effort. While nearest neighbor algorithm
improves the detection rate of predictors built on
projects data, false alarm rates remain high. In order
to decrease false alarm rates, we included ranking
method (RM) framework in our analysis based on our
previous research. Using of RM framework improves
the estimated results with effort decreased from 6% to
3%. The rest of the paper is organized as follows: In
section 2 we briefly review the related works; in Section
3 we explain the project data. Section 4 explains our
rule-based analysis is discussed in Section 5. The last
section gives conclusion.

Il. RELATED WORKS

Software failures greatly reduce system reliability.
As software becomes more and more complex, there
is an urgent need to explore more effective software
testing and debugging tools and software engineering
methods to minimize the number of bugs that escape
into production runs. According to a report from NIST
in 2002, improvements in software testing could
eliminate about $22.2 billions of business loss in US
caused by software errors annually. Since some bugs
still slip through even the strictest testing, system
designers also need to provide fault tolerant
mechanisms to recover from these inevitable software
failures.

Fault mining can be performed on any Java
program representation. It only requires some notion of
interesting program events and a partial order among
these events. Different analysis techniques can be used
to generate events that can be the basis for invariant
inference. Our contribution in this research is to analyze
a large-scale industrial system at the module level. To
accomplish this, we use a state-of-the-art
cross-company defect predictor. We further
demonstrate its practical use by improving its
performance with nearest neighbor sampling technique.
We also use a predictor that not only models intra
module complexities, but also inter module connections.
We used ranking method (RM) framework and show
that combining inter and intra module metrics not only
increases the performance of defect predictors but also

17

decreases the required testing effort for manual
inspection of the source code.

Also the importance of software is increasing in
scientific research and our daily life. Meanwhile, the
cost and consequences of software failure caused by
software bugs become more and more serious. This
research emphasizes a standard process for data
mining based software debugging. This proposed
process provides gquidelines for software testing
engineers and researchers on how to apply data mining
techniques and software testing theory on real life
software testing projects. Data mining based software
debugging projects is a five step process: Establish the
software testing project; data collecting, cleaning and
transformation; select, train and verify the data mining
models; classify, locate and describe the software bug
found in previous steps; and deploy the knowledge
gained into real life software testing project.

ll. PROPOSED METHODOLOGY

The Fig. 1 illustrates a general architecture of the
Ranking method Prediction System. Data is captured
periodically from the software vendors’ Online
Transaction Processing (OLTP) systems which collect
defect report and escalation information. Data may be
captured weekly and stored indefinitely in a data mart.
While the information in the OLTP systems continues
to change from moment to moment, the information in
the data mart remain constant so as to provide the
historical data required for training predictive models in
Prediction engine. All the historical data may be
pre-processed before being fed into data-mining rules.
Derived fields, historical information, and statistics are
added to yield the set of available input fields. These
fields or attributes may include data fields which come
directly from the defect report tracking system and
derived fields obtained from the data and other
sources. The next step is to train and validate
predictive models. Once one or more satisfactory
models have been found, the most appropriate model
may be selected and run against the most recent
snapshot of defect report data. The predicted
escalations may be then reported to the product group
for evaluation and proactive resolution. The product
group may provide feedback to allow for ongoing
improvement of the overall escalation prediction and
prevention effort for that two mechanism is been
implemented one is the average case analysis and the
other is the rule based approach. Here the test projects

18 National Journal on Advances in Computing & Management, Vol. 3 No. 2 October 2012

are implemented in Java and are gathered with 30
static code metrics from each. In total, there are
approximately 5 modules spanning with 3,000 lines of
code. All projects are from presentation and application
layers. The characteristic of projects with dataset has
22 static code attributes. In our analysis also we have
used only the common attributes that are available in
different projects

Data Mining Approach
P Provide
[Check | [Validate |[*TLEeedback

[Case Analysis| | Predict |

Evaluate

A\ 4

[Derive Rules| | Report |
A

Mapping Prod

Mapping Tables

Source

Archiving
Process

Fig. 1. General architecture of the Ranking method
Prediction System

3.1 Average-case analysis

The average values of static code metrics
collected from the different projects are used in this
paper. It also shows the recommended intervals (i.e.
minimum and maximum values) based on statistics
from projects, when applicable. The system explains
that the developers do not write comments throughout
the source code. In case of the Low number of
operands and operators which are indicated with small,
modular methods. While the latter observation can be
interpreted as an objective to decrease maintenance
effort, the former contradicts such as an objective which
requires action. Note that, this shows how a simple
average case analysis can point out conceptual
problems in company objectives as long as
measurement is performed.

3.2 Rule-based Approach

Based on the recommended intervals of the
simple rules for each metric can be defined. These
rules fire, if a module’s metric is not in the specified
interval, indicating the manual inspection of the module.
The basic rules and corresponding metrics, along with
derived rules are identified. The first derived rule, Rule
1 is defined as a disjunction among other basic rules.
That is Rule 1 fires if any basic rule fires. Frequently
rules that are caused are defined as rule 1 which fires
all the time. A solution would be to define new intervals
for these metrics; however, this is not possible since
there are no defect data to derive these
inspection-triggering intervals. In order to overcome this
problem we have defined Rule 2 that fires if all basic
rules are been fired. This reduces the firing frequency
of the disjunction rule. However, Rule 2 states that 6
modules (14%) corresponding to be inspected in order
to detect potential defects. On the other hand, learning
based model will be shown to be far more effective.
Also we have designed two types of analysis using the
learning based model:

e Rule #1 uses the cross-company predictor
with k-nearest neighbor sampling for
predicting fault-prone modules.

e Rule #2 combines inter and intra module
metrics, in other words incorporate RM
framework into static code attributes and
than apply the model of Analysis

IV. RESULTS & DISCUSSION

In this analysis we used the data miner that
achieves significantly better results than many other
algorithms for defect prediction. We selected a random
90% subset of data to train the model. From this
subset, we have selected similar projects that are
similar to trained data in terms of Euclidean distance
in the dimensional metric space. The nearest neighbors
in the random subset are used to train a predictor,
which then made predictions on the data. We repeated
this procedure 20 times and raised a flag for modules
that are estimated as defective at least in 10 trials. The
estimated defect rate is 15% that is consistent with the
rule-based model’'s estimation.

Pravin etal. : Detecting Software Bugs in Source Code ...

Table 1. Explains about the Average-case
analysis of the projects

Estimated Inspection

Project | Language | Defect Rate po

o (%)

(%)
PRJ1 Java 0.05 0.04
PRJ2 Java 0.08 0.05
PRJ3 Java 0.07 0.06
PRJ4 Java 0.08 0.06
PRJ5 Java 0.05 0.08

In the results it explains about the Table 1 which
defines the Average-case analysis of the projects. The
average values of static code metrics collected from
the different projects are used in this result. Table 2
explains the Rule-based analysis. In each and every
rule corresponds to the recommended interval for the
corresponding metric and the % of defects that is been
reduced.

Table 2. Rule-based analysis for each rule
corresponds to the recommended interval

Rule Metric % Defects
Rule1 |Intelligent Content 0.05
Rule2 |Maximum Nesting Depth 0.02
Rule3 |Volume 0.05
Rule4 |[Total Operators 0.06
Rule5 |Time 0.05

V. CONCLUSION

In this paper the investigation is done on
predicting the Software bugs in software source code
using data mining approach. We have also performed
analysis on different projects in order to determine the
characteristics of implementing code and observations
that are been conducted in order to measure the
company objectives. Specifically, the software modules
were written using relatively low number of operands
and operators to increase modularity and to decrease
maintenance effort. However, we have also observed
that the code base was purely commented, which
makes maintenance a difficult task. Our initial data

19

analysis revealed that a simple rule-based model based
on recommended standards on static code attributes
estimates a defect rate of 14% and requires 46% of
the code to be inspected. This is an impractical
outcome considering the scope of the system. Thus,
we have constructed learning based defect predictors
and performed further analysis. We have used data to
learn defect predictors, due to lack of local module level
defect data. This is from the fact that rule-based model
has a bias towards more complex and larger modules,
whereas learning based model predicts that smaller
modules contain most of the defects.

REFERENCES

[1] Tao Xie, Suresh Thummalapenta, David lo, Chao
Liu,"Data Mining for Software Engineering”, IEEE
Computer, August 2009

[2] Hamid Abdul BAsit, Stan Jarzabek, “ A Data Mining
approach for detecting higher-level clones in Software”,
IEEE Transactions on Software Engineering, Vol. 35,
No. 4, July/August 2009

[3] Ivano Malavelta, Henry Muccini, Patrizio Pellicciona,
Damien Andrew Tamburri, “Providing Architectural
Languages and Tools Interoperability through Model
Transformation Technologies”, IEEE Transactions on
Software Engineering, Vol. 36, No. 4, January/February
2010

[4] Tao Xie, Jain Pei, Ahmed E Hassen, “Mining Software
Engineering Data”, IEEE 29 th International Conference
on Software Engineering ICSE 07.

[5] Francisco P.Romero, Jose A.Olivas, MArcele Genero,
Mario Piattini, “Automatic Extraction of the main
terminology used in Empirical Software Engineering
through Text Mining Techniques” ACM ESEM 08

[6] Mohammed J Zaki, Christopher D Carothes, Boleslan
K Szymaski, “VOGUE: A Variable Order hidden Markov
Model with duration based on Frequent Sequence
Mining”, ACM Transactions on Knowledge Discovery
from Data, Vol. 4 No.1, Article 5, January 2010.

[7] Francine Bermas, “Got Data? A quide to data
preservation in the Information Age”, Communications
of the ACM, December 2008

[8] Nizar R Mabroukeh, Christe | Ezeite,” Using Domain
Ontology for Semantic Web Usage Mining and Next
Page Prediction”, ACM CIKM 08

[9] Tim Menzein, Gary D Boettiecher, “Smarter Software
Engineering: Practical Data Mining Approaches”,
[EEE/NASA 27 Th Annual Software Engineering
Workshop 2002.

20

[10]

[11]

[12]

[13]

[14]

National Journal on Advances in Computing & Management, Vol. 3 No. 2 October 2012

Josh Eno, Craig W Thompson,” Generating Synthetic
Data to Match Data Mining Patterns”, IEEE Internet
Computing May/June 2008

0O.Magbool, A Karim, H.A.Babri, Misarwar, “Reverse
Engineering using Association Rules”, IEEE INMIC
2004, pp. 389 -395.

Gang Kou Yipeng, “A Standard for Data Mining based
Software Debugging”, |EEE 4 Th International
Conference on Networked Computing and advanced
Information Management.

Qi Wang, Bo yo, Jie Zhu, “Extract Rules from Software
Engineering Quality Prediction Model based on Neural
Networks”, ICTAI 2004.

Ngoavel Moha, Yann-Gael Gueheneu, Laurence
Duchien, Anne-Fran Coisele Mew, ‘DECOR - A
Method for the Specification and Detection of Code
and Design Smells”, IEEE Transactions on Software
Engineering, Vol. 36, No. 4, January/February 2010

A.Pravin: received the B.E
degree in Computer Science
& Engineering from Bharath
Niketan Engineering College,
Madurai Kamaraj University,
Madurai, India in 2003 and
M.E degree in Computer
Science & Engineering from
Sathyabama University,
Chennai, India in 2005
Where he is currently
working towards the Ph.D degree in Computer Science
& Engineering at Sathyabama University, Chennai,
India.

He works currently as an Assistant Professor for
the Department of Computer Science and Engineering
at SRR Engineering College, chennai and he has more
than 7 Years of teaching experience.He has
participated and presented many Research Papers in
International and National Conferences. His area of
interests includes Software Engineering, Data mining
and Data warehouse.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

